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函数（三大类型题）

学校:___________姓名：___________班级：___________考号：___________

一、函数及其性质，17 题

1．（2023·上海杨浦·统考一模）函数  y f x 满足：对于任意 x R 都有    xf x f a ，（常数 0a  ， 1a  ）.

给出以下两个命题：①无论 a取何值，函数  y f x 不是  0,  上的严格增函数；②当 0 1a  时，存在无

穷多个开区间 1 2, , , ,nI I I ，使得 1 2 nI I I    ，且集合   1( ), ( ),n ny y f x x I y y f x x I     ∣ ∣

对任意正整数 n都成立，则（ ）

A．①②都正确 B．①正确②不正确 C．①不正确②正确 D．①②都不正确

2．（2023·上海奉贤·统考一模）函数
2 1
2 1

x

xy 



在定义域  ,  上是（ ）

A．严格增的奇函数 B．严格增的偶函数

C．严格减的奇函数 D．严格减的偶函数

3．（2023·上海崇明·统考一模）若存在实数 ,a b，对任意实数 [0,1]x ，使得不等式 3 3x m ax b x m  ≤ ≤ 恒

成立，则实数 m的取值范围是（ ）

A．
3
9
,

 
   

 
B．

8 3 ,
9

 
   

 
C．

3 ,
3

 
   

 
D．

3 ,
2

 
   

 

4．（2023·上海金山·统考一模）若函数   2 2(1 )( ) ( 0)f x x x ax b c c      的图像关于直线 2x   对称，

且该函数有且仅有 7个零点，则 a b c  的值为 ．

5．（2023·上海长宁·统考一模）设   2log ( 0)f x x ax b a    ，记函数  y f x 在区间 , 1 ( 0)t t t  上的

最大值为  ,tM a b ，若对任意bR ，都有  , 1
2t
aM a b   ，则实数 t的最大值为 .

6．（2023·上海青浦·统考一模）已知函数

2 2 2, 0

3 , 0

x x x
y ax a x

x

   
 

  

的值域为R ，则实数 a的取值范围

为 ．

7．（2023·上海嘉定·统考一模）己知等差数列 na ，公差为   1 2,d f x x a x a    ，则下列命题正确的是

（ ）

A．函数   y f x x R 可能是奇函数

B．若函数   y f x x R 是偶函数，则 0d 
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C．若 0d  ，则函数   y f x x R 是偶函数

D．若 0d  ，则函数   y f x x R 的图象是轴对称图形

8．（2023·上海徐汇·统考一模）已知函数 ( )y f x ，其中
12( ) 1

2 2

x

x xf x a


  


，存在实数 1 2, , , nx x x 使得

1

1

( ) ( )
n

i n
i

f x f x




 成立，若正整数 n的最大值为 8，则实数 a的取值范围是 ．

9．（2023·上海杨浦·统考一模）函数 3 5y x x    的最小值为 .

10．（2023上·上海松江·高三统考期末）若函数 ( )y f x 是定义在R 上的不恒为零的偶函数，且对任意实数

x都有 ( 2) ( 2) ( ) 2x f x x f x      ，则 (2023)f  ．

11．（2023上·上海浦东新·高三统考期末）已知函数  y f x ，其中  4(
2

) R
x

xf kkx 
  ．

(1)是否存在实数 k，使函数  y f x 是奇函数？若存在，请写出证明．

(2)当 1k  时，若关于 x的不等式  f x a 恒成立，求实数 a的取值范围．

12．（2023·上海杨浦·统考一模）设函数   πsin
2
xf x x A  ，x R（其中常数 RA Î ， 0A  ），无穷数列 na

满足：首项 1 0a  ，  1n na f a  .

(1)判断函数  y f x 的奇偶性，并说明理由；

(2)若数列 na 是严格增数列，求证：当 4A 时，数列 na 不是等差数列；

(3)当 8A  时，数列 na 是否可能为公比小于 0的等比数列？若可能，求出所有公比的值；若不可能，请

说明理由.

13．（2023上·上海松江·高三统考期末）为了鼓励居民节约用气，某市对燃气收费实行阶梯计价，普通居

民燃气收费标准如下：

第一档：年用气量在0 310 （含）立方米，价格为 a元/立方米；

第二档：年用气量在310 520 （含）立方米，价格为b元/立方米；

第三档：年用气量在520立方米以上，价格为c元/立方米.

(1)请写出普通居民的年度燃气费用（单位：元）关于年度的燃气用量（单位：立方米）的函数解析式（用

含 , ,a b c的式子表示）；

(2)已知某户居民 2023年部分月份用气量与缴费情况如下表，求 , ,a b c的值.

月份 1 2 3 4 5 9 10 12
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当月燃气用量（立方米） 56 80 66 58 60 53 55 63

当月燃气费（元） 168 240 198 174 183 174.9 186 264.6

14．（2023·上海徐汇·统考一模）若函数 ( ),y f x x R 的导函数 ( ),y f x x  R 是以 ( 0)T T  为周期的函数，

则称函数 ( ),y f x x R 具有“T性质”．

(1)试判断函数 2y x= 和 siny x 是否具有“ 2π性质”，并说明理由；

(2)已知函数 ( )y h x ，其中 2( ) 2sin (0 3)    h x ax bx bx b 具有“ π性质”，求函数 ( )y h x 在[0, ] 上的极小值

点；

(3)若函数 ( ),y f x x R 具有“T性质”，且存在实数 0M  使得对任意 xR 都有 | ( ) |f x M 成立，求证：

( ),y f x x R 为周期函数．

（可用结论：若函数 ( ),y f x x R 的导函数满足 ( )=0,f x x R ，则 ( )f x C （常数）．）

15．（2023上·上海虹口·高三统考期末）已知  y f x 与  y g x 都是定义在  0,  上的函数，若对任意 1
x ，

 2 0,x   ，当 1 2x x 时，都有        1 2
1 2

1 2

f x f x
g x g x

x x


 


，则称  y g x 是  y f x 的一个“控制函数”．

(1)判断 2y x 是否为函数  02  xxy 的一个控制函数，并说明理由；

(2)设   lnf x x 的导数为  f x ，0 a b  ，求证：关于 x的方程
     f b f a

f x
b a





在区间  ,a b 上有实

数解；

(3)设   lnf x x x ，函数  y f x 是否存在控制函数？若存在，请求出  y f x 的控制函数；若不存在，

请说明理由．
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16．（2023·上海长宁·统考一模）若函数  y f x 与  y g x 满足：对任意 1 2,x x R ，都有

       1 2 1 2f x f x g x g x   ，则称函数  y f x 是函数  y g x 的“约束函数”.已知函数  y f x 是函

数  y g x 的“约束函数”.

(1)若   2f x x ，判断函数  y g x 的奇偶性，并说明理由：

(2)若    3 ( 0), sinf x ax x a g x x    ，求实数 a的取值范围；

(3)若  y g x 为严格减函数，    0 1f f ，且函数  y f x 的图像是连续曲线，求证：  y f x 是  0,1 上

的严格增函数.

17．（2023·上海金山·统考一模）设函数 ( )y f x 的定义域为D，给定区间[ , ]a b D ，若存在 0 ( , )x a b ，

使得 0
( ) ( )( ) f b f af x
b a





，则称函数 ( )y f x 为区间[ , ]a b 上的“均值函数”， 0x 为函数 ( )y f x 的“均值点”．

(1)试判断函数 2y x= 是否为区间[1, 2]上的“均值函数”，如果是，请求出其“均值点”；如果不是，请说明理

由；

(2)已知函数 2 1 12 2 12x xy m      是区间[1,3]上的“均值函数”，求实数m的取值范围；

(3)若函数
2

22( 2 2)
x ay

x x



 

（常数 aR ）是区间 [ 2,2] 上的“均值函数”，且
2
3 为其“均值点”．将区间[ 2,0]

任意划分成 1m （ Nm ）份，设分点的横坐标从小到大依次为 1 2, , , mt t t ，记 0 2t   ， 1 0mt   ，

1
0

| ( ) ( ) |
m

i i
i

G f t f t


  ．再将区间 [0,2]等分成 2 1n  （ nN）份，设等分点的横坐标从小到大依次为

1 2 2
, , , nx x x ，记

2

1
( )

n

i
i

H f x


 ．求使得 2023H G  的最小整数 n的值．二、指对数函数，8 题

18．（2023·上海杨浦·统考一模）等比数列 na 的首项 1
1
64

a  ，公比为q，数列 nb 满足 0.5logn nb a （n是

正整数），若当且仅当 4n  时， nb 的前 n项和 nB 取得最大值，则q取值范围是（ ）

A．  3, 2 3 B．  3, 4 C．  2 2,4 D．  2 2,3 2

19．（2023·上海崇明·统考一模）若 0x y  ，则下列不等式正确的是（ ）

A． x y B． 2 2x y C．
1 1
x y
 D．

2
x y xy

≤

20．（2023·上海青浦·统考一模）已知 a， Rb ，则“ a b ”是“ 3 3a b ”的（ ）.

A．充分非必要条件 B．必要非充分条件

C．充要条件 D．既非充分也非必要条件
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21．（2023·上海闵行·统考一模）已知 a， Rb ， a b ，则下列不等式中不一定成立的是（ ）

A． 2 2a b   B． 2 2a b C． 2 2a b D． 2 2a b

22．（2023上·上海松江·高三统考期末）已知 lg lg 1a b  ，则 2a b的最小值为

23．（2023上·上海虹口·高三统考期末）函数   1lg 2
5

y x
x

  


的定义域为 ．

24．（2023·上海宝山·统考一模）已知函数    31 1f x x   ，正项等比数列 na 满足 1012
1
10

a  ，则  
2023

1
lg k

k
f a




25．（2023·上海杨浦·统考一模）设函数   exf x  ， xR .

(1)求方程     2
2f x f x  的实数解；

(2)若不等式  x b f x  对于一切 xR 都成立，求实数b的取值范围.

三、函数的应用，6 题

26．（2023·上海青浦·统考一模）若函数 cos( )y x   是奇函数，则该函数的所有零点是 ．

27．（2023上·上海虹口·高三统考期末）设 aR ，若关于 x的方程  2 2 1 0x x a x x a      有 3个不同

的实数解，则实数 a的取值范围为 ．

28．（2023·上海长宁·统考一模）在有声世界，声强级是表示声强度相对大小的指标.其值 y（单位： dB）

定义为
0

10lg Iy
I

 .其中 I 为声场中某点的声强度，其单位为
2 12 2

0W/m , 10 W / mI  为基准值.若 210W / mI  ，

则其相应的声强级为 dB .

29．（2023·上海徐汇·统考一模）函数 lg(2 1) lgy x x   的零点是 ．

30．（2023·上海青浦·统考一模）上海各中学都定期进行紧急疏散演习：当警报响起，建筑物内师生马上有

组织、尽快地疏散撤离．对于一个特定的建筑物，管理人员关心房间内所有人疏散完毕（房间最后一个人．．．．．

到达安全出口处．．．．．．．）所用时间．．．数学建模小组准备对某教学楼第一层楼两间相同的教室展开研究．为此，他

们提出如下模型假设：

1.疏散时所有人员有秩序地撤离建筑物；

2.所有人员排成单列行进撤离；
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3.队列中人员的间隔是均匀的；

4.队列匀速地撤离建筑物．

(1)上述模型假设是否合理，请任选两个模型假设说明理由；

(2)如图，设第一间教室（图中右）的人数为 1 1n  ，第二间教室（图中左）的人数为 2 1n  ，每间教室的长

度为 l，其中 1n ， 2n 都是正整数， 0l  ，忽略教室门的宽度及忽略教室内人群到教室门口的时间．．．请再引

入适当的变量．．，建立两个教室内的人员完全撤离所用时间．．的数学模型．31．（2023·上海宝山·统考一模）已

知函数   exf x x  ，   e xg x x  ，其中 e为自然对数的底数.

(1)求函数  y f x 的图象在点   1, 1f 处的切线方程；

(2)设函数      F x af x g x  ，

①若 ea  ，求函数  y F x 的单调区间，并写出函数  y F x m  有三个零点时实数m的取值范围；

②当 0 1a  时， 1 2x x、 分别为函数  y F x 的极大值点和极小值点，且不等式    1 2 0F x tF x  对任意

 0,1a 恒成立，求实数 t的取值范围.
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函数（三大类型题）

学校:___________姓名：___________班级：___________考号：___________

一、函数及其性质，17 题

1．（2023·上海杨浦·统考一模）函数  y f x 满足：对于任意 x R 都有    xf x f a ，（常数 0a  ， 1a  ）.

给出以下两个命题：①无论 a取何值，函数  y f x 不是  0,  上的严格增函数；②当 0 1a  时，存在无

穷多个开区间 1 2, , , ,nI I I ，使得 1 2 nI I I    ，且集合   1( ), ( ),n ny y f x x I y y f x x I     ∣ ∣

对任意正整数 n都成立，则（ ）

A．①②都正确 B．①正确②不正确 C．①不正确②正确 D．①②都不正确

【答案】A

【分析】对于①，由题得    1f f a ，然后反证法推出矛盾即可；对于②令 1 (0,1)I  ，然后根据    xf x f a

分别得出 2 , , ,nI I ，判断为正确.

【详解】对于①：由题得    1f f a ，若函数  y f x 是  0,  上的严格增函数，因为 0a  ， 1a  ，则

当 1a  时，    1f f a ，当 0 1a  时，    1f f a ，均与    1f f a 矛盾，所以无论 a取何值，函数

 y f x 不是  0,  上的严格增函数，故①正确；

对于②：因为对于任意 x R 都有    xf x f a ，令 1 (0,1)I  ，当 1 (0,1)x I  时， 2( ,1) (0,1)xa a I   ，

且   1 2( ), ( ),y y f x x I y y f x x I    ∣ ∣ ，

当 2 ( ,1)x I a  时， 3 2( , )x aa a a I I   ，且   2 3( ), ( ),y y f x x I y y f x x I    ∣ ∣ ，

当 3 ( , )ax I a a  时， 4 3( , )
ax a aa a a I I   ，且

   3 4( ), ( ),y y f x x I y y f x x I    ∣ ∣ ，

以此类推，故当 0 1a  时，存在无穷多个开区间 1 2, , , ,nI I I ，使得 1 2 nI I I    ，且集合

   1( ), ( ),n ny y f x x I y y f x x I     ∣ ∣ 对任意正整数 n都成立，故②正确，

故选：A.

2．（2023·上海奉贤·统考一模）函数
2 1
2 1

x

xy 



在定义域  ,  上是（ ）

A．严格增的奇函数 B．严格增的偶函数

C．严格减的奇函数 D．严格减的偶函数
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【答案】A

【分析】根据题意，分别判断函数奇偶性以及单调性，即可得到结果.

【详解】令   2 1
2 1

x

xf x 



，任取 1 2x x R ，

则      
  

1 21 2

2 2 1 2
1 2

2 2 22 1 2 1
2 1 2 1 2 1 2 1

x xx x

x x x x
f x f x

 
   

   
，

因为 2xy  是R 上的严格增函数，所以 1 22 2x x ，

则
 

  
1 2

1 2

2 2 2
0

2 1 2 1

x x

x x




 
，所以    1 2f x f x ，

则函数
2 1
2 1

x

xy 



是R 上的严格增函数；

又    
1 2

2 1 1 22
1 22 1 2 1
2

x

x xx

xx x

x

f x f x





 

     
 

，即函数  f x 为奇函数，

所以函数
2 1
2 1

x

xy 



在定义域  ,  上是严格增的奇函数.

故选：A

3．（2023·上海崇明·统考一模）若存在实数 ,a b，对任意实数 [0,1]x ，使得不等式 3 3x m ax b x m  ≤ ≤ 恒

成立，则实数 m的取值范围是（ ）

A．
3
9
,

 
   

 
B．

8 3 ,
9

 
   

 
C．

3 ,
3

 
   

 
D．

3 ,
2

 
   

 

【答案】A

【分析】不等式 3 3x m ax b x m     等价于
3x ax b m  ，原命题等价于存在实数 a，b，对任意实

数 [0,1]x 不等式
3x ax b m  恒成立，等价于存在实数 a，b，不等式

3
max

x ax b m    成立，分别

讨论 0a  ，0 1a  ，1 3a  ， 3a  的情况，先求出
3

max
x ax b ，再求出  3

max min
x ax b 即可解

决问题.

【详解】不等式 3 3x m ax b x m     等价于 3m x ax b m     即
3x ax b m  ，

原命题等价于存在实数 a，b，对任意实数 [0,1]x 不等式
3x ax b m  恒成立，

等价于存在实数 a，b，不等式
3

max
x ax b m    成立，

记 3( ) x ax bf x    ，则 2( ) 3f x x a    ，
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（1）当 0a  时，对任意 [0,1]x ， ( ) 0f x  恒成立，即 ( )f x 在[0,1]上单调递减 1 ( )a b f x b   

①当 1 0a b b    ，即
1
2
ab 

 时， max
( )f x b ，

②当 1 0a b b    ，即
1
2
ab 

 时， max
( ) 1f x a b    ，

从而当 0a  时，

1,
2( )

1 1,
2

abb
g b

a b ab





     

，

则 ( )g b 在
1( , )
2
a

 上单调递减，在
1 ,
2
a  

上单调递增，

所以 min
1 1 1( ) ( )
2 2 2
a ag b g  

   ；

（2）当 0 < < 3a 时，令 ( ) 0f x  ，解得
3
ax  ，

( )f x 在区间 0,
3
a 

 
 

上单调递增，在 ,1
3
a 

 
 

上单调递减，

(0)f b ，
2

3 3 3
a a af b

 
   

 
， (1) 1  f a b ，

①当0 1a  时 1a b b   ，此时
21 ( )
3 3
a aa b f x b     ，

) 当
21 0
3 3
a aa b b     即

1 1
2 2 3 3

a ab a   时， max
( ) 1f x a b    ，

) 当
21 0
3 3
a aa b b     即

1 1
2 2 3 3

a ab a   时，
max

2
3

)
3

(f ba ax  ，

从而当0 1a  时，

1 12 8 ,
2 2 3 3( ) 2
1 1,3 3
2 2 3 3

a aa b b a
g b a a b a ab a

     
 

   

，

则 ( )g b 在区间
1 1,
2 2 3 3

a aa
 
    
 

上单调递减，在区间
1 1 ,
2 2 3 3

a aa
 

    
 

上单调递增,

所以 min
1 1 1( )
2 2 6 3 2 2 3 3

a a a a ag b g a
 

       
 

；

令
3
at  ，则

10
3

t  ，
2 3

min
1 3( )
2 2

g b t t   ，记
2 31 3( )

2 2
h t t t   ，

则 2( ) 3 3 ) 3 ( 1)h t t t t t     ，

当
10,
3

 
 
 

时， ( ) 0h t  恒成立，
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即 ( )h t 在区间
10,
3

 
 
 

上单调递减，即 min
1 3( )
3 9

h t h
 

   
 

，

即 min
3( )
9

g b  ；

②当1 3a  时 1a b b   ，此时
2( )
3 3
a ab f x b   ，

) 当
2 0
3 3
a ab b   即

3 3
a ab   时， max

( )f x b  ，

) 当
2 0
3 3
a ab b   即

3 3
a ab   时，

max

2
3

)
3

(f ba ax  ，

从而当1 3a  时，

,
3 3( ) 2

,3 3
3 3

a ab b
g b a a b a ab

  
 

  

，

则 ( )g b 在区间 ,
3 3
a a 

   
 

上单调递减，在区间 ,
3 3
a a 

   
 

上单调递增，

所以 min
3( )

3 3 3 3 9
a a a ag b g

 
     

 
；

（3）当 3a  时，对任意 [0,1]x ， ( ) 0f x  恒成立，即 ( )f x 在[0,1]上单调递增，

( ) 1b f x a b   

①当 1 0a b b    ，即
1
2
ab 

 时， max
( ) 1f x a b   ，

②当 1 0a b b    ，即
1
2
ab 

 时， max
( )f x b  ，

从而当 3a  时，

1,2 8 2( )
1,
2

aba b
g b

b ab


 

   
，

则 ( )g b 在
1( , )
2
a

 上单调递减，在
1 ,
2
a  

上单调递增，

所以 min
1 1
2

)
2

( ( ) 1g ab g a
  


；

综上所述， min
3( )
9

g b  ，

所以
3
9

m  .

故选：A

【点睛】结论点睛：本题考查不等式的恒成立与有解问题，可按如下规则转化：

一般地，已知函数    , ,y f x x a b  ，    , ,y g x x c d 

（1）若  1 ,x a b  ，  2 ,x c d  ，总有    1 2f x g x 成立，故    1 2max min
f x g x ；
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（2）若  1 ,x a b  ，  2 ,x c d  ，有    1 2f x g x 成立，故    1 2max max
f x g x ；

（3）若  1 ,x a b  ，  2 ,x c d  ，有    1 2f x g x 成立，故    1 2min min
f x g x ；

（4）若  1 ,x a b  ，  2 ,x c d  ，有    1 2f x g x ，则  f x 的值域是  g x 值域的子集 ．

4．（2023·上海金山·统考一模）若函数   2 2(1 )( ) ( 0)f x x x ax b c c      的图像关于直线 2x   对称，

且该函数有且仅有 7个零点，则 a b c  的值为 ．

【答案】32

【分析】根据题意，求得   2 2(1 )( )g x x x ax b    的图形过点 (1,0), ( 1,0) ，得到  g x 的图象过点

( 3,0), ( 5,0)  ，结合    1 3g g   ，    1 5g g  ，联立方程组，求得 ,a b的值，得出

  2 2(1 )( 8 15)f x x x x c     ，再根据题意，得到 2x   必为函数  y f x 的一个零点，结合  2 0f   ，

求得 c的值，即可求解.

【详解】由函数   2 2(1 )( )f x x x ax b c     ，

则函数   2 2(1 )( )g x x x ax b    的图形过点 (1,0), ( 1,0) ，

因为函数  g x 的图象关于 2x   对称，则函数  g x 的图象过点 ( 3,0), ( 5,0)  ，

可得    1 0, 3 (1 9)(9 3 )g g a b       ，且    1 3g g   ，可得9 3 0a b   ，

又由    1 0, 5 (1 25)(25 5 )g g a b      ，且    1 5g g  ，可得 25 5 0a b   ，

联立方程组
9 3 0
25 5 0

a b
a b

  
   

，解得 8, 15a b  ，

所以   2 2(1 )( 8 15)g x x x x    ，

因为函数  y f x 图像关于直线 2x   对称，且该函数有且仅有 7个零点，

则 2x   必为函数  y f x 的一个零点，即  2 0f   ，

可得 (1 4)(4 8 2 15) 0c      ，解得 9c  ，

所以 32a b c   .

故答案为：32 .

5．（2023·上海长宁·统考一模）设   2log ( 0)f x x ax b a    ，记函数  y f x 在区间 , 1 ( 0)t t t  上的

最大值为  ,tM a b ，若对任意bR ，都有  , 1
2t
aM a b   ，则实数 t的最大值为 .
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【答案】
1
3

【分析】根据 2log  y x ax b在  , 1 ( 0)t t t  内单调递增，分析可知   1
2
af t   或  1 1

2
af t    ，整理得

关于b的不等式 2log 1
2
ab t at     或  2log 1 1

2
ab t at      的解集为R ，可得

 2 2log 1 1 log 1
2 2
a at at t at          ，运算求解即可.

【详解】因为 0a  ，则 2log ,  y x y ax b在 , 1 ( 0)t t t  内单调递增，

则 2log  y x ax b在 , 1 ( 0)t t t  内单调递增，

又因为 2( ) logf x x ax b   在区间  , 1 ( 0)t t t  上的最大值为 ( , )tM a b ，

可得 ( , ) ( )tM a b f t 或 ( , ) ( 1) tM a b f t ，

由题意可知：   1
2
af t   或  1 1

2
af t    ，

则 2(log ) 1
2
at at b     或    2log 1 1 1

2
at a t b      ，

整理得 2log 1
2
ab t at     或  2log 1 1

2
ab t at      ，

即关于b的不等式 2log 1
2
ab t at     或  2log 1 1

2
ab t at      的解集为R ，

可知  2 2log 1 1 log 1
2 2
a at at t at          ，

整理得  2 2 2
1log 1 log log 1 2t t
t

      
 

，则
11 4
t

  ，

又因为 0t  ，解得
10
3

t ≤ ，所以 t的最大值为
1
3
.

故答案为：
1
3
．

【点睛】方法点睛：恒成立问题解题方法指导：

方法 1：分离参数法求最值.

(1)分离变量．构造函数，直接把问题转化为函数的最值问题．

(2) ( )a f x 恒成立⇔ max( )a f x ；

( )a f x 恒成立⇔ min( )a f x ；

( )a f x 能成立⇔ min( )a f x ；

( )a f x 能成立⇔ max( )a f x .

方法 2：根据不等式恒成立构造函数转化成求函数的最值问题，一般需讨论参数范围，借助函数单调性求

解．
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6．（2023·上海青浦·统考一模）已知函数

2 2 2, 0

3 , 0

x x x
y ax a x

x

   
 

  

的值域为R ，则实数 a的取值范围

为 ．

【答案】    ,0 1, 

【分析】先求解出 0x  时  f x 的值域，然后根据 0, 0, 0a a a   分类讨论 0x  时  f x 的值域，由此确

定出 a的取值范围.

【详解】当 0x  时，    22 2 2 1 1f x x x x      ，此时    1,f x   ，

当 0a  且 0x  时，  f x x ，

此时    ,0f x   ，且    ,0 1,   R ，所以不满足；

当 0a  且 0x  时，   3af x x a
x

   ，

由对勾函数单调性可知  f x 在  , a  上单调递增，在  ,0a 上单调递减，

所以    max
3 2f x f a a a    ，此时    ,3 2f x a a    ，

若要满足  f x 的值域为R ，只需要3 2 1a a  ，解得 1a  ；

当 a<0且 0x  时，因为 , ay x y
x

  均在  ,0 上单调递增，

所以   3af x x a
x

   在  ,0 上单调递增，且 0x 时，  f x ， x时，  f x ，

所以此时    ,f x    ，此时显然能满足  f x 的值域为R ；

综上可知， a的取值范围是    ,0 1,   ，

故答案为：    ,0 1,   .

7．（2023·上海嘉定·统考一模）己知等差数列 na ，公差为   1 2,d f x x a x a    ，则下列命题正确的是

（ ）

A．函数   y f x x R 可能是奇函数

B．若函数   y f x x R 是偶函数，则 0d 

C．若 0d  ，则函数   y f x x R 是偶函数

D．若 0d  ，则函数   y f x x R 的图象是轴对称图形

【答案】D
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【分析】利用  0 0f  可判断 A；举反例可判断 BC；求出    21f a x f a x  可判断 D.

【详解】对于 A，若函数   y f x x R 是奇函数，则   1 20 0 0 0f a a     ，

可得 1 2 0a a  ，所以 0na  ，此时   2f x x ，    2f x x f x   ，

此时函数   y f x x R 是偶函数，故 A错误；

对于 B，当 2 3na n  时， 1 21, 1a a   ，所以   1 1f x x x    ，

   1 1 1 1f x x x x x f x            ，函数   y f x x R 是偶函数，

则 2 0d   ，故 B错误；

对于 C，若 1na  ，则 0d  ，则   2 1f x x  ，所以   2 1 2 1f x x x      ，

则    f x f x  ，所以函数   y f x x R 不是偶函数，故 C错误；

对于 D，若 0d  ，则  1 1 1 21f a x a x a a x a x d x        ，

 2 2 21 2f a x a x a a x a x d x       ，所以    21f a x f a x  ，

所以函数   y f x x R 的图象关于 1 2

2
ax a




对称，是轴对称图形，故 D正确.

故选：D.

8．（2023·上海徐汇·统考一模）已知函数 ( )y f x ，其中
12( ) 1

2 2

x

x xf x a


  


，存在实数 1 2, , , nx x x 使得

1

1

( ) ( )
n

i n
i

f x f x




 成立，若正整数 n的最大值为 8，则实数 a的取值范围是 ．

【答案】
4 9 9 4
3 7 7 3

         
， ，

【分析】设

12( ) 1
2 2

x

x xg x


 
 ，得到 1 ( ) 1a g x a a      ，然后分类讨论 a的范围，解出即可.

【详解】设

1

2

2 2( ) 1 1
2 2 (2 ) 1

x

x x xg x


   
  ，

又因为 2 2(2 ) 0, (2 ) 1 1x x   ，

所以 1 ( ) 1g x   ，

则 1 ( ) 1a g x a a      ，

当0 1a  时， 1 1,0 1 1a a       ，

则0 ( ) 1f x a   ，
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显然存在任意正整数 n使得
1

1

( ) ( )
n

i n
i

f x f x




 成立；

当 1a  时， 1 1 0a a     ，

1 ( ) 1a f x a    ，

要使得正整数 n的最大值为 8，则

7( 1) 1
8( 1) 1
a a
a a
  

   
，解得

9 4
7 3

a  ，

当 1 0a   时， 1 1 0,1 1a a       ，

0 ( ) 1f x a   ，

显然存在任意整数 n使得
1

1

( ) ( )
n

i n
i

f x f x




 成立；

当 1a   时，0 1 1a a     ，

1 ( ) 1a f x a     ，

要使得正整数 n的最大值为 8，则

7( 1) 1
8( 1) 1
a a
a a

   
   

，解得
4 9
3 7

a    ，

综上，则实数 a的取值范围是
4 9 9 4
3 7 7 3

         
， ， .

故答案为：
4 9 9 4
3 7 7 3

         
， ， .

9．（2023·上海杨浦·统考一模）函数 3 5y x x    的最小值为 .

【答案】 2

【分析】将函数写成分段函数形式，再结合分段函数的单调性，可得最小值.

【详解】由已知

2 8, 3
3 5 2,3 5

2 8, 5

x x
y x x x

x x

  
      
  

，

所以当  ,3x   时，函数 3 5y x x    单调递减，且 2y  ，

当  5,x  时，函数 3 5y x x    单调递增，且 2y  ，

当  3,5x 时， 3 5 2y x x     ，

所以函数 3 5y x x    的最小值为 2，

故答案为： 2 .

10．（2023上·上海松江·高三统考期末）若函数 ( )y f x 是定义在R 上的不恒为零的偶函数，且对任意实数
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x都有 ( 2) ( 2) ( ) 2x f x x f x      ，则 (2023)f  ．

【答案】 1

【分析】利用赋值法，结合累加法求解.

【详解】函数 ( )y f x 是定义在R 上的不恒为零的偶函数，则 ( ) ( )f x f x   ，

( 2) ( 2) ( ) 2x f x x f x      中，令 = 1x  ，得 (1) ( 1) 2f f    ，

则 (1) (1) 2f f   ，得 (1) 1f   ，

当 0x  时，由 ( 2) ( 2) ( ) 2x f x x f x      ，得
( 2) ( ) 2

2 ( 2)
f x f x
x x x x


 
 

，

即
( 2) ( ) 1 1

2 2
f x f x
x x x x


  
 

，

∴
(2023) (2023) (2021) (2021) (2019) (3) (1) (1)
2023 2023 2021 2021 2019 3 1 1
f f f f f f f f

       

1 1 1 1 1 1 1 1 1 1 1
2021 2023 2019 2021 1 3 1 2023 1 1 2023

 
              ，

∴
1(2023) 2023 1

2023
f       

 
.

故答案为： 1 .

11．（2023上·上海浦东新·高三统考期末）已知函数  y f x ，其中  4(
2

) R
x

xf kkx 
  ．

(1)是否存在实数 k，使函数  y f x 是奇函数？若存在，请写出证明．

(2)当 1k  时，若关于 x的不等式  f x a 恒成立，求实数 a的取值范围．

【答案】(1) 1k   ，证明见解析

(2)  ,2

【分析】（1）  f x 是奇函数，利用  0 0f  解出 k并检验即可．

（2）利用基本不等式求  f x 的最小值解决恒成立问题.

【详解】（1）函数
4( )
2

x

x
kf x 

 定义域为 R，若  f x 是奇函数，则  0 1 0f k   ，解得 1k   ，

此时
4 1 2) 2( =
2

x
x

x
xf x 

  ，  ( ) 2 2 2 2 ( )x x x xf x f x         ，符合题意，

故 1k   .

（2）当 1k  时，
4 1 1( ) 2
2 2

x
x

x xf x 
   ，

由 2 0x  ，则
1 12 2 2 2
2 2

x x
x x    ，当且仅当

12
2

x
x ，即 0x  时等号成立，

所以 ( ) 2f x  ，又不等式  f x a 恒成立，得 2a  ，

19
1 
21
51
 9
47
9



微信公众号：MS ZHANG 课堂 如需咨询课程，请添加微信：191 2151 9479

试卷第 17页，共 37页
学科网（北京）股份有限公司

则实数 a的取值范围为  ,2 .

12．（2023·上海杨浦·统考一模）设函数   πsin
2
xf x x A  ，x R（其中常数 RA Î ， 0A  ），无穷数列 na

满足：首项 1 0a  ，  1n na f a  .

(1)判断函数  y f x 的奇偶性，并说明理由；

(2)若数列 na 是严格增数列，求证：当 4A 时，数列 na 不是等差数列；

(3)当 8A  时，数列 na 是否可能为公比小于 0的等比数列？若可能，求出所有公比的值；若不可能，请

说明理由.

【答案】(1)奇函数，理由见解析

(2)见解析

(3)存在公比为负数的无穷等比数列{ }na ，其公比只能是 1

【分析】（1）利用奇偶性的定义即可判定；

（2）反证法，假设假设数列{ }na 是等差数列，公差为d ，然后结合等差数列的性质推出矛盾；

（3）根据递推关系得到 na 与q的关系，讨论公比与 1 的大小关系，然后根据等比数列的性质即可得出答

案.

【详解】（1）任取 x R ，都有
π π( ) sin sin ( )
2 2
x xf x x A x A f x               

   
，

因此函数 ( )y f x 是奇函数．

（2）反证法：假设数列{ }na 是等差数列，公差为d ，

由数列{ }na 是严格增数列可知 0d  ．

因为 1
πsin
2
n

n n
aa a A   ，所以

πsin
2
naA d ，即

πsin
2
na d

A
 非零常数

因为
   1 11 π π 2πsin sin sin 0

2 2 2
a d a da  

    ，

所以 4d k （其中 k是正整数）．

因为 4d  ， 0 4A  ，所以 1d
A
 ．方程

πsin
2
x d

A
 无解，矛盾．

假设不成立，即当 4A 时，数列{ }na 不是等差数列．

（3）若数列{ }na 是等比数列，则其各项均非零，设其公比为q
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由 1
π8sin
2
n

n n
aa a   得

1 8 π1 sin
2

n n

n n

a a
a a
   ，即

πsin ( 1)
2 8
n na a q  ．

考虑方程
π 1sin
2 8
x q x
 ， na 均为该方程（记为①）的解．

由函数
πsin
2
xy  的值域为[ 1,1] 可知

1 1
8
q x

 ，即
8| |

| 1 |
x

q



，

所以
8| |

| 1 |na q



．若 1q   ，则当 n充分大时（ | |

1

8log 1
| 1 |qn

a q
 

 时），

8| |
| 1 |na q




，这与
8| |

| 1 |na q



矛盾，从而不合题意．

若 1 0q   ，函数
π 1sin
2 8
x qy x

  在[ 1,1] 是严格增函数

由 0x  时 0y  ，可知函数当 [ 1, 0) (0,1]x   时，均有 0y  ，

因此函数的零点（即方程①的解）的绝对值均大于 1，即 | | 1na  ．

但若 1 0q   ，由
1

1| | | |nna a q  ，则当 n充分大时（ | |
1

11 log qn
a

  时），

将有 | | 1na  ，这与 | | 1na  矛盾，从而不合题意．

综上，只能有 1q   ．此时方程①为
π 1sin
2 4
x x  ，

记
π( ) sin ,
2 4
x xg x x  R ．因为

1(2) 0
2

g   ，
1(3) 0
4

g   

所以存在 0 (2, 3)x  ，使 0x 是方程①的解．

进而由函数 ( )y g x 是奇函数， 0x 也是方程①的解．因此只需取

0

0

, 2 1,
, 2 ,n

x n k
a

x n k
 

  
其中 k是正整数即可.

综合上述，存在公比为负数的无穷等比数列{ }na ，其公比只能是 1 ．

13．（2023上·上海松江·高三统考期末）为了鼓励居民节约用气，某市对燃气收费实行阶梯计价，普通居

民燃气收费标准如下：

第一档：年用气量在0 310 （含）立方米，价格为 a元/立方米；

第二档：年用气量在310 520 （含）立方米，价格为b元/立方米；

第三档：年用气量在520立方米以上，价格为c元/立方米.

(1)请写出普通居民的年度燃气费用（单位：元）关于年度的燃气用量（单位：立方米）的函数解析式（用

含 , ,a b c的式子表示）；

(2)已知某户居民 2023年部分月份用气量与缴费情况如下表，求 , ,a b c的值.

月份 1 2 3 4 5 9 10 12
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当月燃气用量（立方米） 56 80 66 58 60 53 55 63

当月燃气费（元） 168 240 198 174 183 174.9 186 264.6

【答案】(1)
,0 310

310 ( 310),310 520
310 210 ( 520), 520

ax x
y a b x x

a b c x x

 
    
    

(2) 3a  ， 3.3b  ， 4.2c 

【分析】（1）根据燃气收费标准求得解析式.

（2）根据表格提供数据以及函数解析式求得 , ,a b c .

【详解】（1）依题意，函数解析式为：

,0 310
310 ( 310),310 520
310 210 ( 520), 520

ax x
y a b x x

a b c x x

 
    
    

（2）解法一：

由一月份数据可得：
168 3
56

a   ，

通过计算前 5个月用量：56 80 66 58 60 320     ，

前 5个月燃气总费用：168 240 198 174 183 963     ，

由（1）中函数解析式，计算可得：963 310 3 (320 310)b    ，

所以 3.3b  ，

又 9月份，10月份，12月份的燃气费均价分别为：3.3,3.38, 4.2均不同，

所以 12月份为第三档，
264.6 4.2
63

c   .

解法二：

1月份，5月份，9月份，10月份，12月份的燃气费均价分别为：3,3.05,3.3,3.38, 4.2均不同．

所以 1月份为第一档，5月份为第一档和第二档，10月份与 12月份不同，

则 12月份为第三档，10月份与 9月份不同，10月份为第二档与第三档，9月份为第二档．

从而得到， 3, 3.3, 4.2a b c   .

14．（2023·上海徐汇·统考一模）若函数 ( ),y f x x R 的导函数 ( ),y f x x  R 是以 ( 0)T T  为周期的函数，

则称函数 ( ),y f x x R 具有“T性质”．

(1)试判断函数 2y x= 和 siny x 是否具有“ 2π性质”，并说明理由；

(2)已知函数 ( )y h x ，其中 2( ) 2sin (0 3)    h x ax bx bx b 具有“ π性质”，求函数 ( )y h x 在[0, ] 上的极小值
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点；

(3)若函数 ( ),y f x x R 具有“T性质”，且存在实数 0M  使得对任意 xR 都有 | ( ) |f x M 成立，求证：

( ),y f x x R 为周期函数．

（可用结论：若函数 ( ),y f x x R 的导函数满足 ( )=0,f x x R ，则 ( )f x C （常数）．）

【答案】(1) 2( )f x x 不具有“ 2π性质”， ( ) sing x x 具有“ 2π性质”，理由见解析

(2)
2π
3

(3)证明见解析

【分析】（1）根据所给定义计算可得；

（2）法一：依题意可得 ( π) ( )h x h x   可得
πcos cos ( π) abx b x
b

   对 xR 恒成立，再令 0x  、
πx
b

 求出 a、

b的值，再利用导数求出函数的极小值点；法二：依题意可得
π π πsin( ) sin( )
2 2 2
b b abx

b
   ，所以

πsin( ) 0
2
b

 且
π 0
2
a
b
 ，

即可求出 a、b的值，再利用导数求出函数的极小值点；

（3）令      h x f x T f x   ，则   0h x  ，从而得到  h x c （c为常数），法一：分 0c = 、 0c  、 0c 

三种情况讨论；法二：分 0c = 和 0c  两种情况讨论，当 0c  时，不妨令 0c  ，记 1Mn
c

    
，推出矛盾

即可得解.

【详解】（1） 2( )f x x 不具有“ 2π性质”．理由是： ( ) 2f x x  ，  2π (0) 4π 0f f    ，  2π (0)f f   ；

( ) sing x x 具有“ 2π性质”．理由是： ( ) cosg x x ， ( 2π) ( )g x g x   ．

（2）法一： 2( ) 2sin (0 3)    h x ax bx bx b ，则 ( ) 2 2 cos (0 3)     h x ax b b bx b ，

由 ( π) ( )h x h x   可得
πcos cos ( π) abx b x
b

   对 xR 恒成立．

令 0x  ，得
π1 cos π ab
b

  ①；令
πx
b

 ，得
π1 cos π ab
b

   ②．

① ②得
2 π 0a
b

 ，因此 0a  ，从而 cos cos( π)bx bx b  恒成立，

π 2 πb k  即有 2 ,b k k Z且 0b  ．

由0 3b  得 =2b ，所以 ( ) 2 4 cos 2  h x x，当 [0, π]x 时，令 ( ) 0h x  可得
π 2π,
3 3

x x  ，列表如下：

x
π[0, )
3

π
3

( , )
3 3
  2π

3
2( π ,
3

π]

( )h x + 0  0 +
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( )h x  极大值  极小值 

函数 ( )h x 在[0, ] 的极小值点为
2π
3
．

法二： ( ) 2 2 cos (0 3)     h x ax b b bx b ，

由 ( π) ( )h x h x   ，可得
πcos cos ( π) abx b x
b

   ，

所以
π π π π πcos cos
2 2 2 2
b b b b abx bx

b
                       

，

即
π π π π π π π π πcos cos sin sin cos cos sin sin
2 2 2 2 2 2 2 2
b b b b b b b b abx bx bx bx

b
                     
       

，

所以
π π πsin( ) sin( )
2 2 2
b b abx

b
   ，所以

πsin( ) 0
2
b

 且
π 0
2
a
b
 ，所以 0a  且 =2 ( Z)b k k 且 0b  ．

由0 3b  得 =2b ，所以 ( ) 2 4 cos 2  h x x，当 [0, π]x 时，令 ( ) 0h x  可得
π 2π,
3 3

x x  ，列表如下：

x
π[0, )
3

π
3

( , )
3 3
  2π

3
2( π ,
3

π]

( )h x + 0  0 +

( )h x  极大值  极小值 

函数 ( )h x 在[0, ] 的极小值点为
2π
3
．

（3）令      h x f x T f x   ，因为   , Ry f x x  具有“T ”性质

   f x T f x    ，

      0h x f x T f x       ，

     h x c f x T f x     （c为常数），

法一：

① 若 0c = ， ( )f x 是以T为周期的周期函数；

②若 0c  ，由 ( ) (0)f nT f nc  ，

当
(0)M fn

c


 时， ( ) (0) (0) (0)f nT f nc f M f M      ，这与  f x M 矛盾，舍去；

③若 0c  ，由 ( ) (0)f nT f nc  ，

当
(0)M fn

c
 

 时， ( ) (0) (0) (0)f nT f nc f M f M       ，这与  f x M 矛盾，舍去．

综上， 0c = ．     0f x T f x   ，所以  f x 是周期函数．

法二：
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当 0c = 时，     0f x T f x   ，所以  f x 是周期函数．

当 0c  时，不妨令 0c  ，记 1Mn
c

    
，其中[ ]x 表示不大于 x的最大整数．（ 0c  同理可证），

若存在  0 0f x  ，这    0 0 1Mf x nT f x nc nc c M
c

            
．

这与  f x M 矛盾．

若存在  0 0f x  ，这    0 0| | 1            

Mf x nT f x nc nc c M
c

．

这与  f x M 矛盾．

若不存在 0 Rx  ，使得  0 0f x  或  0 0f x  ，则  =0, Rf x x ，此时 0c = ，与 0c  矛盾，故舍去．

综上， 0c = ．     0f x T f x   ，所以  f x 是周期函数．

【点睛】方法点睛：函数新定义问题的方法和技巧：

（1）可通过举例子的方式，将抽象的定义转化为具体的简单的应用，从而加深对信息的理解；

（2）可用自己的语言转述新信息所表达的内容，如果能清晰描述，那么说明对此信息理解的较为透彻；

（3）发现新信息与所学知识的联系，并从描述中体会信息的本质特征与规律；

（4）如果新信息是课本知识的推广，则要关注此信息与课本中概念的不同之处，以及什么情况下可以使

用书上的概念.

15．（2023上·上海虹口·高三统考期末）已知  y f x 与  y g x 都是定义在  0,  上的函数，若对任意 1
x ，

 2 0,x   ，当 1 2x x 时，都有        1 2
1 2

1 2

f x f x
g x g x

x x


 


，则称  y g x 是  y f x 的一个“控制函数”．

(1)判断 2y x 是否为函数  02  xxy 的一个控制函数，并说明理由；

(2)设   lnf x x 的导数为  f x ，0 a b  ，求证：关于 x的方程
     f b f a

f x
b a





在区间  ,a b 上有实

数解；

(3)设   lnf x x x ，函数  y f x 是否存在控制函数？若存在，请求出  y f x 的控制函数；若不存在，

请说明理由．

【答案】(1)是，理由见解析

(2)证明见解析

(3)存在， lny x
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【分析】（1）根据已知控制函数的定义，即可得出结论；

（2）设 ln 1y x x   ， 0x  ，由其导数得出其在 0x  上的最大值为 0，则 ln 1 0b b
a a
   ，ln 1 0a a

b b
   ，

变形化简得出
   1 1f b f a

b b a a


 


，而   1f x
x

  在区间  ,a b 上的值域为
1 1,
b a

 
 
 

，即可证明；

（3）由上面两问可看出控制函数可能是原函数的导数，证明
   1 2

1 2
1 2

ln ln
f x f x

x x
x x


 


，根据不等式的运

算可以证明，发现控制函数可能是原函数的导数去掉常数项.

【详解】（1）对任意 1 20 x x  ，则
  2 2

1 2 1 21 2
1 2

1 2 1 2

x x x xx x x x
x x x x

 
  

 
，且 1 1 2 22 2x x x x   ，

故 2y x 是函数  02  xxy 的一个控制函数；

（2）因为0 a b  ，则     lnln ln
b

f b f a b a a
b a b a b a
 

 
  

，

则     ln1 1
b

f b f a a
b a a b a a


  
 

，     ln1 1
a

f b f a b
b a b a b b


  
 

0 a b   ， 1b
a

  ，0 1b
a

 

设 ln 1y x x   ， 0x 

在 1x  上
1 1 0y
x

    ，在 0 1x  上
1 1 0y
x

    ，

则 ln 1y x x   在 1x  单调递减，在 0 1x  上单调递增，

最大值 max ln1 1 1 0y     ，

0 a b   ， 1b
a

  ，0 1b
a

  ， 0b a  ， 0a b  ，

ln 1 0b b
a a
   ， ln 1 0a a

b b
   ，

则 ln 0b b a
a a


  ，

0b a 

ln 1 0

b
a

b a a
  


，即

    1f b f a
b a a





，

同理， ln 0a a b
b b


  ，

0a b Q

ln 0a a b
b b


   ，即

    1f b f a
b a b




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综上：
   1 1f b f a

b b a a


 


，

  1f x
x

  ，在区间  ,a b 上的值域为
1 1,
b a

 
 
 

，

则
     f b f a

f x
b a





在区间  ,a b 上有实数解.

（3）   lnf x x x ，则
   1 2 1 1 2 2

1 2 1 2

ln lnf x f x x x x x
x x x x
 


 

，其中 1 20 x x 

1 1 2 2
1

1 2

ln ln lnx x x x x
x x



 ，

1 1 2 2 1 1 2 1

1 2 1 2

ln ln ln lnx x x x x x x x
x x x x
 

 
  ，

1
2

2 2 2 1 2

1 2 1 2

ln
ln ln

xx
x x x x x

x x x x
 

 
 

，

1 20 x x  ，
1

1 2
2

01,0 x x x
x

    ，

1

2

ln 0x
x

  ，则

1
2

2

1 2

ln
0

xx
x

x x



，即

1 1 2 2
1

1 2

ln ln lnx x x x x
x x



 ，

同理
1 1 2 2

2
1 2

ln ln lnx x x x x
x x



 ，

即
   1 2

1 2
1 2

ln ln
f x f x

x x
x x


 


，

则 lny x 是  y f x 的一个控制函数.

【点睛】关键点睛：对于函数的新定义题要理解好定义的内容，不等式运算时注意不等式的要求，变号时

要多注意，一般的大题在前面的问题和后面的问题有联系，后面的问题没有思路时看看前面的问题，

16．（2023·上海长宁·统考一模）若函数  y f x 与  y g x 满足：对任意 1 2,x x R ，都有

       1 2 1 2f x f x g x g x   ，则称函数  y f x 是函数  y g x 的“约束函数”.已知函数  y f x 是函

数  y g x 的“约束函数”.

(1)若   2f x x ，判断函数  y g x 的奇偶性，并说明理由：

(2)若    3 ( 0), sinf x ax x a g x x    ，求实数 a的取值范围；

(3)若  y g x 为严格减函数，    0 1f f ，且函数  y f x 的图像是连续曲线，求证：  y f x 是  0,1 上

的严格增函数.

【答案】(1)  y g x 是偶函数；理由见解析
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(2) 1a 

(3)证明见解析

【分析】（1）根据题意结合偶函数的定义分析证明；

（2）根据题意结合  y f x 的单调性分析可得        1 1 2 2f x g x f x g x   ，        1 1 2 2f x g x f x g x   ，

设      u x f x g x  ，      v x f x g x  ，可知  y u x 与  y v x 均为R 上的严格增函数，利用导数分析求

解；

（3）根据题意分析可得任意 1 2x x ，都有    1 2f x f x ，利用反证法先证当 0 1x  时，      0 1f f x f  ，

再明当 1 20 1x x< < < 时，    1 2f x f x ，即可得结果.

【详解】（1）因为   2f x x ，故对任意的 xR 都有     0f x f x   ．

又因为函数  y f x 是函数  y g x 的“约束函数”，

则对任意 1 2,x x R ，都有        1 2 1 2f x f x g x g x   ，

取 1 2,   x x x xR ，可得        0      f x f x g x g x 恒成立，

即    g x g x  对任意的 xR 成立，故  y g x 是偶函数；

（2）因为 3( 0),  y ax a y x 是R 上的严格增函数，则  y f x 是R 上的严格增函数，

设 1 2x x ，则    1 2f x f x ，

进而        1 2 2 1g x g x f x f x   ，

可得        1 2 2 1  g x g x f x f x ，        2 1 2 1  g x g x f x f x ，

所以        1 1 2 2f x g x f x g x   ，        1 1 2 2f x g x f x g x   ，

设      u x f x g x  ，      v x f x g x  ，

则  y u x 与  y v x 均为R 上的严格增函数，

因为   23 cos 0u x a x x     ，   23 cos 0v x a x x     恒成立，

对于   23 cos 0v x a x x     恒成立，

因为 23 0x  ， cos 1x   ，当且仅当 0x  时，等号成立，

所以 23 cos 1 0    a x x a ，解得得 1a  ，
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当 1a  时，   23 cos cos 0      u x a x x a x 恒成立，

所以实数 a的取值范围为 1a  .

（3）设 1 2x x ，因为  y g x 是严格减函数，所以    1 2g x g x ，即    1 2 0g x g x  ，

而        2 1 1 2f x f x g x g x   ，所以    1 2 0f x f x  ，

所以对任意 1 2x x ，都有    1 2f x f x ，

①首先证明：当 0 1x  时，      0 1f f x f  ，

假设存在 00 1x  ，且    01f f x ，

设      1h x f x f  ，则  0 0h  ，  0 0h x  ，

所以存在  3 00,x x ，使得  3 0h x  ，

得    3 1f x f ，与结论对任意 1 2x x ，    1 2f x f x 矛盾，

所以不存在 00 1x  ，使得    01f f x ，

同理可得：也不存在 00 1x  ，使得    0 0f x f ，

所以当 0 1x  时，      0 1f f x f  .

②再证明：当 1 20 1x x< < < 时，    1 2f x f x ，

假设存在 1 20 1x x< < < ，使得    1 2f x f x ，则        2 10 1f f x f x f   ，

设      2h x f x f x  ，则  0 0h  ，  1 0h x  ，

所以存在  3 10,x x ，使得  3 0h x  ，

得    3 2f x f x ，与结论对任意 1 2x x ，    1 2f x f x 矛盾，

所以假设不成立，即对任意  1 2, 0,1x x  ，都有    1 2f x f x

所以  y f x 是  0,1 上的严格增函数.

【点睛】关键点睛：“新定义”题型的关键是根据新定义的概念、新公式、新定理、新法则、新运算五种，

然后根据此新定义去解决问题，有时还需要用类比的方法去理解新的定义，这样有助于对新定义的透彻理

解，（3）中也结合反证法分析求解.

17．（2023·上海金山·统考一模）设函数 ( )y f x 的定义域为D，给定区间[ , ]a b D ，若存在 0 ( , )x a b ，
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使得 0
( ) ( )( ) f b f af x
b a





，则称函数 ( )y f x 为区间[ , ]a b 上的“均值函数”， 0x 为函数 ( )y f x 的“均值点”．

(1)试判断函数 2y x= 是否为区间[1, 2]上的“均值函数”，如果是，请求出其“均值点”；如果不是，请说明理

由；

(2)已知函数 2 1 12 2 12x xy m      是区间[1,3]上的“均值函数”，求实数m的取值范围；

(3)若函数
2

22( 2 2)
x ay

x x



 

（常数 aR ）是区间 [ 2,2] 上的“均值函数”，且
2
3 为其“均值点”．将区间[ 2,0]

任意划分成 1m （ Nm ）份，设分点的横坐标从小到大依次为 1 2, , , mt t t ，记 0 2t   ， 1 0mt   ，

1
0

| ( ) ( ) |
m

i i
i

G f t f t


  ．再将区间 [0,2]等分成 2 1n  （ nN）份，设等分点的横坐标从小到大依次为

1 2 2
, , , nx x x ，记

2

1
( )

n

i
i

H f x


 ．求使得 2023H G  的最小整数 n的值．

【答案】(1) 2y x= 为区间[1, 2]上的“均值函数”，且 3为其“均值点”

(2) ( ,2) [2 3 6, )  

(3)15

【分析】（1）根据题意，得到方程
2 2

2
0

2 1
2 1

x 



，求得 0 3x ，即可得到答案；

（2）设 0x 为该函数的“均值点”，则 0 (1,3)x  ，根据题意转化为 0 02(2 3) 2 6x xm   在 (1,3)上有解，分类讨

论，结合对勾函数性质，即可求解；

（3）根据题意，得到方程
2 (2) ( 2)( )
3 2 ( 2)

f ff  


 
，求得 0a  ，得出

2

2( )
2( 2 2)

xf x
x x


 

，利用导数求得函

数的单调性，得到 1)( ()i if tf t  ，求得
1
5

G  ，结合 ( ) (2 ) 1f x f x   ，进而求得 12nH  ，利用指数幂的

运算性质，即可求解.

【详解】（1）解：设函数 2y x= 是区间[1, 2]上的“均值函数”，且均值点为 0 [1,2]x  ，

可得
2 2

2
0

2 1
2 1

x 



，解得 0 3x 或 0 3x   (舍).

故 2y x= 为区间[1, 2]上的“均值函数”，且 3为其“均值点”.

（2）解：设 0x 为该函数的“均值点”，则 0 (1,3)x  ，

且 0 0

5 2 0
2 1 1 ( 2 2 12) ( 2 2 12)2 2 12

3 1
x x m mm          

    


，
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即关于 0x 的方程 0 022 2 3 6 0x xm m     在区间 (1,3)上有解，

整理得 0 02(2 3) 2 6x xm   ，

①当 02 3x  时，0 3m  ，方程无解.

②当 02 3x  时，可得
0

0

22 6
2 3

x

xm 



.

令 02 3xt   ，则 ( 1,0) (0,5)t   ，且 02 3x t  ，

可得
2( 3) 6 3 6tm t
t t

 
    ，

又由对勾函数性质，可得函数
3 6y t
t

   在 ( 1, 0)t   上是严格减函数，

在 (0, 3]t 上是严格减函数，在 [ 3,5)t 上严格增函数，

所以当 ( 1, 0)t   时，可得 2y＜ ，当 (0,5)t ，可得 2 3 6y   ，

所以 ( ,2) [2 3 6, )m    .

即实数m的取值范围是 ( ,2) [2 3 6, )   .

（3）解：由函数
2

22( 2 2)
x ay

x x



 

是区间[ 2,2] 上的“均值函数”，且
2
3 为其“均值点”，

可得
2 (2) ( 2)( )
3 2 ( 2)

f ff  


 
，即

2

2

4 42( ) 2(4 4 2) 2(4 4 2)3
2 2 2 ( 2)2[( ) 2 2]
3 3

a a
a

 
    

   
，

解得 0a  ，所以
2

2( )
2( 2 2)

xf x
x x


 

，

则
2 2

2 2 2 2

1 2 ( 2 2) (2 2) (2 )( )
2 ( 2 2) ( 2 2)

x x x x x x xf x
x x x x

         
   

，

当 [ 2,0]x  时， ( ) 0f x  ，即
2

2( )
2( 2 2)

xf x
x x


 

在 [ 2,0] 上单调递减，

所以 1)( ()i if tf t  ( 0,1, 2, ,i m  )，

则 1 1 0 1
0 0

1| ( ) ( ) | [ ( ) ( )] ( ) ( ) ( 2) (0)
5

m m

i i i i m
i i

G f t f t f t f t f t f t f f  
 

           ，

又因为
2 2

2 2
(2 )( ) (2 ) 1

2( 1) 2 2(1 ) 2
x xf x f x

x x


    
   

，

从而 1 2 2
( ) ( ) ( )nH f x f x f x    ， 12 2 1

( ) ( ) ( )n nH f x f x f x


    ，
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所以 2 2nH  ，可得 12nH  .，

由
11 2 2023

5
n  ，即 2 20230n  ，可得 2log 20230 14.3n   ，

故使得 2023H G  的最小整数 n的值为15 .

【点睛】方法指数总结：对于函数的新定义题型的求解策略：

（1）关于函数的新定义问题，关键是理解函数新定义的概念，根据函数的新定义的概念，挖掘其隐含条

件，把新定义问题转化为函数关系或不等关系式等是解答的关键；

（2）关于函数的新定义问题，通常关联着函数的基本性质的综合应用，解答中要熟练掌握和应用函数的

有关性质和一些重用的结论，同时注意合理应用数形结合、导数、均值不等式等知识点的应用，以及它们

之间的逻辑关系，提升逻辑推理能力.

二、指对数函数，8 题

18．（2023·上海杨浦·统考一模）等比数列 na 的首项 1
1
64

a  ，公比为q，数列 nb 满足 0.5logn nb a （n是

正整数），若当且仅当 4n  时， nb 的前 n项和 nB 取得最大值，则q取值范围是（ ）

A．  3, 2 3 B．  3, 4 C．  2 2,4 D．  2 2,3 2

【答案】C

【分析】求出 nb 的通项公式，分析出其为等差数列，然后由条件得出
4

5

0
0

b
b


 
，代入通项公式即可求解.

【详解】    1 1
0.5 0.5 1 0.5 0.5 0.5 0.5 0.5

1log log log log 6 1 log log 6 log
64

n n
n nb a a q q n q n q q           

所以 nb 是以 1 6b  为首项， 0.5logd q 为公差的等差数列，

若当且仅当 4n  时， nb 的前 n项和 nB 取得最大值，

所以

2
0.5 0.5 0.54 0.5

3
25 0.5 0.5

0.5 0.5

log 2 log log 0.50 6 3log 0
30 6 4 log 0 log log log 0.52

q qb q
b q q q





                     
3

220.5 0.5q
    即， 2 2 4q  ，

故选：C.

19．（2023·上海崇明·统考一模）若 0x y  ，则下列不等式正确的是（ ）

A． x y B． 2 2x y C．
1 1
x y
 D．

2
x y xy

≤

【答案】C

【分析】ABD举反例即可判断，C结合反比例函数即可判断.
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【详解】对 A，若 2, 1x y  ，则 0x y  ，但 x y ，A错误；

对 B，若 2, 1x y  ，则 0x y  ，但 2 2x y ，B错误

对 D，若 2, 1x y  ，则 0x y  ，
3 2
2 2

x y xy
   ，D错误；

对 C，结合反比例函数
1y
x

 知其在 (0, ) 单调递减，则 0x y  ，有
1 1
x y
 ，C正确.

故选：C

20．（2023·上海青浦·统考一模）已知 a， Rb ，则“ a b ”是“ 3 3a b ”的（ ）.

A．充分非必要条件 B．必要非充分条件

C．充要条件 D．既非充分也非必要条件

【答案】C

【分析】直接根据充分性和必要性的定义判断即可.

【详解】因为函数 3y x 在R 上单调递增，

所以 3 3a b a b   ，

即“ a b ”是“ 3 3a b ”的充要条件.

故选：C.

21．（2023·上海闵行·统考一模）已知 a， Rb ， a b ，则下列不等式中不一定成立的是（ ）

A． 2 2a b   B． 2 2a b C． 2 2a b D． 2 2a b

【答案】C

【分析】根据不等式性质可判断 A，B；举反例可判断 C；根据指数函数的单调性判断 D.

【详解】对于 A，B，a， Rb ， a b ，则 2 2a b   ,2 2a b 一定成立；

对于 C，取 1, 2a b    ，满足 a b ，则 2 2a b ，

当 0a b  时， 2 2a b ，故 C中不等式不一定成立；

对于 D，由 a b ，由于 2xy  在 R上单调递增，则 2 2a b 成立，

故选：C

22．（2023上·上海松江·高三统考期末）已知 lg lg 1a b  ，则 2a b的最小值为

【答案】 4 5

【分析】根据对数运算求得 ,a b的关系，利用基本不等式求得正确答案.

【详解】依题意， lg lg lg 1a b ab   ，

所以 10ab  且 0, 0a b  ，

所以 2 2 2 4 5a b a b    ，
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当 2 2 5a b  时等号成立.

故答案为： 4 5

23．（2023上·上海虹口·高三统考期末）函数   1lg 2
5

y x
x

  


的定义域为 ．

【答案】  2,5

【分析】根据对数的真数大于 0和根号下大于等于 0以及分母不等于 0得到不等式组，解出即可.

【详解】由题意得
2 0

5 0
x

x
 

  
，解得2 5x  ，所以定义域为  2,5 ，

故答案为：  2,5 .

24．（2023·上海宝山·统考一模）已知函数    31 1f x x   ，正项等比数列 na 满足 1012
1
10

a  ，则  
2023

1
lg k

k
f a




【答案】 2023

【分析】利用倒序相加法，结合函数的对称性以及等比数列的性质即可求得正确答案.

【详解】函数    31 1f x x   ，可看成 3y x 向左平移 1个单位，向上平移 1个单位得到,

因为 3y x 的对称中心为  0,0 ，所以    31 1f x x   的对称中心为  1,1 ，

所以    2 2f x f x    ，

因为正项等比数列 na 满足 1012
1
10

a  ，所以
2

1 2023 2 2022 1012
1
100

a a a a a      ，

所以 1 2023 2 2022 1012lg lg lg lg 2lg 2a a a a a       ，

所以        1 2023 2 2022lg lg lg lg 2f a f a f a f a     ，

         
2023

1 2 3 2023
1

lg lg lg llg gk
k
f a f a f a f a f a



      L ①，

         
2023

2023 2022 2021 1
1

lg lg lglg lgk
k

f a f a f af fa a


      L ②，

则①②相加得：

             
2023

1 2023 2 2022 2023 1
1

2 lg lg lg lg lg lgg ,l k
k

f a f a f a f ff a a f a a


                 即

 
2023

1
lg2 2023 2k

k
f a



  ，

所以  
2023

1
lg 2023k

k
f a



 .

故答案为： 2023 .

25．（2023·上海杨浦·统考一模）设函数   exf x  ， xR .
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(1)求方程     2
2f x f x  的实数解；

(2)若不等式  x b f x  对于一切 xR 都成立，求实数b的取值范围.

【答案】(1) ln 2

(2) 1b 

【分析】（1）转化为关于 ex的一元二次方程求解即可；

（2）分离参数后，构造函数，利用导数求函数的最小值即可得解.

【详解】（1）由   exf x  知，方程     2
2f x f x  为  2e e 2x x  ，

即   e 2 e 1 0x x   ，

解得 e 2x  ，即 ln 2x  .

（2）不等式  x b f x  即 exx b  ，

原不等式可化为 exb x  对于一切 xR 都成立，

令 ( ) e xg x x  ，则 ( ) e 1xg x   ，

当 0x  时， ( ) 0g x  ，当 0x  时， ( ) 0g x  ，

所以函数 ( )g x 在 ( ,0) 上递减，在 (0, ) 上递增，

故当 0x  时， min( ) (0) 1x g  ，

所以 1b  .

三、函数的应用，6 题

26．（2023·上海青浦·统考一模）若函数 cos( )y x   是奇函数，则该函数的所有零点是 ．

【答案】 π, Zx k k  ；

【分析】根据函数为奇函数进行求解即可.

【详解】因为函数 cos( )y x   是奇函数，

所以 1 1
π0 π, Z
2

k k    ，即 1 1
π π, Z
2

k k    ，

则 cos( ) 0y x    ，

得  2 2 2 2 1
π ππ, Z π π
2 2

x k k x k k k           ，

则  2 1 π= πx k k k  ，其中 2 1 Zk k k   ，

所以该函数的所有零点是 π, Zx k k  .
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故答案为： π, Zx k k 

27．（2023上·上海虹口·高三统考期末）设 aR ，若关于 x的方程  2 2 1 0x x a x x a      有 3个不同

的实数解，则实数 a的取值范围为 ．

【答案】  9,

【分析】根据题意分类讨论，转化为二次函数问题直接求解即可.

【详解】当 0x  时，方程可化为  22 3 1 0x a x a     ，即    2 1 1 0x a x    ，

则
1

2
ax 

 或 = 1x  （舍）；

当 0x＜ 时，方程可化为  22 1 1 0x a x a      ；

要使原方程有三个根，则 0x  时有一根， 0x＜ 时有两根，

则
1 0

2
a 

 且

   2Δ 1 8 1 0
1 0
2
1 0

2

a a
a

a


    
 






＞

＜

＞

，解得 1a  且 9a＞ ，

所以实数 a的取值范围为  9,

【点睛】方法点睛：已知函数有零点(方程有根)求参数值(取值范围)常用的方法：

（1）直接法：直接求解方程得到方程的根，再通过解不等式确定参数范围；

（2）分离参数法：先将参数分离，转化成求函数的值域问题加以解决；

（3）数形结合法：先对解析式变形，进而构造两个函数，然后在同一平面直角坐标系中画出函数的图象，

利用数形结合的方法求解

28．（2023·上海长宁·统考一模）在有声世界，声强级是表示声强度相对大小的指标.其值 y（单位： dB）

定义为
0

10lg Iy
I

 .其中 I 为声场中某点的声强度，其单位为
2 12 2

0W/m , 10 W / mI  为基准值.若 210W / mI  ，

则其相应的声强级为 dB .

【答案】130

【分析】将题中数据直接代入公式，结合对数运算求解.

【详解】因为 210W / mI  ，
12 2

0 10 W / mI  ，

所以其相应的声强级为 12
1310lg 10lg10 13010

10  y dB .

故答案为：130.

29．（2023·上海徐汇·统考一模）函数 lg(2 1) lgy x x   的零点是 ．
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【答案】
1
2
/0.5

【分析】利用对数运算及零点含义可得答案.

【详解】由题意可得函数的定义域为  0,  .

2lg(2 1) lg lg(2 )y x x x x     ，令 0y  可得 22 1x x  ，解得
1
2

x  或 = 1x  （舍），

故答案为：
1
2 .

30．（2023·上海青浦·统考一模）上海各中学都定期进行紧急疏散演习：当警报响起，建筑物内师生马上有

组织、尽快地疏散撤离．对于一个特定的建筑物，管理人员关心房间内所有人疏散完毕（房间最后一个人．．．．．

到达安全出口处．．．．．．．）所用时间．．．数学建模小组准备对某教学楼第一层楼两间相同的教室展开研究．为此，他

们提出如下模型假设：

1.疏散时所有人员有秩序地撤离建筑物；

2.所有人员排成单列行进撤离；

3.队列中人员的间隔是均匀的；

4.队列匀速地撤离建筑物．

(1)上述模型假设是否合理，请任选两个模型假设说明理由；

(2)如图，设第一间教室（图中右）的人数为 1 1n  ，第二间教室（图中左）的人数为 2 1n  ，每间教室的长

度为 l，其中 1n ， 2n 都是正整数， 0l  ，忽略教室门的宽度及忽略教室内人群到教室门口的时间．．．请再引

入适当的变量．．，建立两个教室内的人员完全撤离所用时间．．的数学模型．

【答案】(1)答案见解析

(2)答案见解析

【分析】（1）根据各假设的目的分别判断；

（2）设队列人与人之间的距离为  0d d  ，队列行进的速度为  0v v  ，分两种情况讨论，情况一：当第
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二间教室的第一个人到达第一间教室门口的时候，第一间教室已经撤空， 22l n dt
v


 ；情况二：当第二间

教室的第一个人到达第一间教室门口的时候，第一间教室还没有撤空， 1 2l n d n d dt
v

  
 ，可得分段函数

模型.

【详解】（1）四个模型假设都合理．理由如下（供参考）：

假设 1是为了保证撤离人员的安全，基本符合实际情况；

假设 2 是为了方便模型的建立，与假设 1相呼应；

假设 3 是为了方便建立模型，属于模型简化的处理方法；

假设 4 是为了方便建立模型，属于模型简化的处理方法．

（2）设队列人与人之间的距离为  0d d  ，队列行进的速度为  0v v  ，

先考虑第一间教室人员的疏散，该教室最后一个人达到出口即为疏散完毕，所用时间 1
1

l n dt
v


 ；第二间

教室最后一个人达到出口所用时间为 2
2

2l n dt
v


 ．

在所有人员排成单列行进撤离的假设下，建立模型（供参考）

情况一：

当第二间教室的第一个人到达第一间教室门口的时候，第一间教室已经撤空（即第一间教室的最后一个人

不影响第二间教室人员的撤离），这种情形出现的条件是 1n d d l
v v


 ，这时两个教室内的人员完全撤离所

用时间为 22l n dt
v


 ；

情况二：

当第二间教室的第一个人到达第一间教室门口的时候，第一间教室还没有撤空，此时需要等第一间教室撤

空后第二间教室的队伍再继续行进，这种情形出现的条件是 1n d d l
v v


 ，这时两个教室内的人员完全撤离

所用时间为 1 2l n d n d dt
v

  
 ，

 

 

2
1

1 2
1

2 ,

,

l n d n d d l
vt

l n d n d d n d d l
v

        


.

31．（2023·上海宝山·统考一模）已知函数   exf x x  ，   e xg x x  ，其中 e为自然对数的底数.

(1)求函数  y f x 的图象在点   1, 1f 处的切线方程；

(2)设函数      F x af x g x  ，

①若 ea  ，求函数  y F x 的单调区间，并写出函数  y F x m  有三个零点时实数m的取值范围；
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②当 0 1a  时， 1 2x x、 分别为函数  y F x 的极大值点和极小值点，且不等式    1 2 0F x tF x  对任意

 0,1a 恒成立，求实数 t的取值范围.

【答案】(1)  e 1y x  ；

(2)①单调区间见解析，  e 1,2 ，②  , 1  .

【分析】（1）求出函数 ( )f x 的导数，利用导数的几何意义求出切线方程即得.

（2）①把 ea  代入，求出 ( )F x 的导数 ( )F x ，确定 ( ) 0, ( ) 0F x F x   的解集得单调区间，结合极大值、

极小值求出m的范围；②由导数求出 1 2,x x ，构造函数 1 2( ) ) ( )(F x tFa x  并借助导数探讨不等式恒成立即

可.

【详解】（1）函数   exf x x  ，求导得 ( ) e 1xf x   ，得 (1) e 1f    ，而 (1) e 1f   ，

所以切线方程为    (e 1) e 1 1y x     ，即  e 1y x  .

（2）函数 ( ) (e ) ex xF x a x x    的定义域为 R，求导得
( e 1)(e 1)( ) (e 1)+e 1

e

x x
x x

x

aF x a        ，

①当 ea  时， 1( ) e e ex xF x x x     ，
1(e 1)(e 1)( )

e

x x

xF x
    ，由 ( ) 0F x  ，得 = 1x  或 0x  ，

当 1x   或 0x  时， ( ) 0F x  ，当 1 0x   时， ( ) 0F x  ，

因此函数 ( )F x 的单调增区间为  , 1  和  0,  ，单调减区间为  1,0 ；

极大值  1 2F   ，极小值  0 e 1F   ，

又
2 1 1 3 1 1(1) e e 1 e(e 1) 1 e 1 4 1 2

e e 2 e e
F                ，

1 2 1 2( 2) e 2e e 2 (e 1) (e e 3 e ) e 1F               ，

所以函数 ( )y F x m  有三个零点时m的取值范围为  e 1,2 .

②令 ( ) 0F x  ，得 e 1x  或
1e 1x

a
  ，解得 0x  或

1ln ln 0x a
a

    ，

当 0x  或 lnx a  时， ( ) 0F x  ，当0 lnx a   时， ( ) 0F x  ，

即函数 ( )F x 在 ( ,0) ， ( ln , )a  上单调递增，在 (0, ln )a 上单调递减，

因此当 0x  时， ( )F x 取得极大值，当 lnx a  时， ( )F x 取得极小值，即有 1 20, lnx x a   ，

而 1( ) (0) 1 0F x F a    ， 2 1
1( ) ( ln ) ( ln ) ln ( 1) ln 1 ( ) 0F x F a a a a a a a a F x
a

            ，

又不等式 1 2( 0) ( )F x tF x  对任意  0,1a 恒成立，于是 0t  ，
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设 1 2( ) ) ( ) 1 [( 1) ln 1 ], (0,1)(a a tF a a aF x t x a        ，

显然 (1) 0  ，
1 1( ) 1 (ln 1) 1 (ln ), (0,1)aa t a t a a

a a
          ，

令
1( ) ln , (0,1)m a a a
a

   ，求导得 2 2

1 1 1( ) 0am a
a a a

     ，

则函数 ( )m a 在(0,1)上严格递减，有 ( ) (1) 1m a m  ，

当 1t   时，
1( ) 1 (ln ) 0a a
a

     ，则有函数 ( )a 在(0,1)上严格递减， ( ) (1) 0a   ，符合题意；

当 1 0t   时，存在 0 (0,1)a  ，使得 0( ) 0a  ，当 00 a a  时， ( ) 0a  ，当 0 1a a  时， ( ) 0a  ，

因此函数 ( )a 在 0( ,1)a 上严格递增，有 ( ) (1) 0a   ，不符合题意，

所以实数 t的取值范围为  , 1  .

【点睛】思路点睛：不等式恒成立或存在型问题，可构造函数，利用导数研究函数的单调性，求出最值，

进而得出相应的含参不等式，从而求出参数的取值范围；也可分离变量，构造函数，直接把问题转化为函

数的最值问题.

19
1 
21
51
 9
47
9


